Schubert problems with respect to osculating flags of stable rational curves
نویسندگان
چکیده
منابع مشابه
Rational Curves on Minuscule Schubert Varieties
Let us denote by C the variety of lines in P3 meeting a fixed line, it is a grassmannian (and hence minuscule) Schubert variety. In [P2] we described the irreducible components of the scheme of morphisms from P1 to C and the general morphism of these irreducible components. In this text we study the scheme of morphisms from P1 to any minuscule Schubert variety X. Let us recall that we studied i...
متن کاملa comparison of teachers and supervisors, with respect to teacher efficacy and reflection
supervisors play an undeniable role in training teachers, before starting their professional experience by preparing them, at the initial years of their teaching by checking their work within the proper framework, and later on during their teaching by assessing their progress. but surprisingly, exploring their attributes, professional demands, and qualifications has remained a neglected theme i...
15 صفحه اولSpreads and Ovoids Translation with Respect to Disjoint Flags
It is shown that if a spread of a finite split Cayley hexagon is translation with respect to two disjoint flags then it is either a hermitian spread or a Ree–Tits spread. Analogously, if an ovoid of a classical generalized quadrangle Qð4; qÞ is translation with respect to two disjoint flags then it is either an elliptic quadric or a Suzuki–Tits ovoid. In the course of obtaining these results, w...
متن کاملA Congruence modulo Four for Real Schubert Calculus with Isotropic Flags
We previously obtained a congruence modulo four for the number of real solutions to many Schubert problems on a square Grassmannian given by osculating flags. Here, we consider Schubert problems given by more general isotropic flags, and prove this congruence modulo four for the largest class of Schubert problems that could be expected to exhibit this congruence.
متن کاملSmall rational curves on the moduli space of stable bundles
For a smooth projective curve C with genus g ≥ 2 and a degree 1 line bundle L on C, let M := SUC(r,L) be the moduli space of stable vector bundles of rank r over C with the fixed determinant L. In this paper, we study the small rational curves on M and estimate the codimension of the locus of the small rational curves. In particular, we determine all small rational curves when r = 3.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebraic Geometry
سال: 2014
ISSN: 2214-2584
DOI: 10.14231/ag-2014-002